Exercícios sobre arranjo simples

Esta lista de exercícios avaliará seus conhecimentos sobre o arranjo simples, um dos tipos de agrupamentos estudados na análise combinatória.

Publicado por: Raul Rodrigues de Oliveira

Questões

  1. Questão 1

    Qual é a quantidade de arranjos simples que podemos fazer utilizando 3 letras do conjunto {A, B, C, D, E}?

    A) 10

    B) 12

    C) 15

    D) 30

    E) 60

  2. Questão 2

    Na busca de incentivar os estudantes da escola a participarem do evento de Halloween, um colégio decidiu sortear 3 prêmios para 10 estudantes que estiverem com as melhores fantasias, sendo os prêmios: uma bicicleta, um smartphone e um tablet. O número de maneiras distintas que podemos ter o resultado desse sorteio é:

    A) 120

    B) 250

    C) 360

    D) 720

    E) 1480

  3. Questão 3

    Durante as eleições de diretor e vice-diretor escolar de uma escola estadual, ficou determinado pelo edital que o diretor seria o candidato mais votado e o vice-diretor o segundo candidato mais votado. Se, em determinada escola, 4 profissionais se candidataram para a vaga de gestor, o número de resultados distintos que podemos ter para diretor e vice-diretor é:

    A) 8

    B) 10

    C) 12

    D) 15

    E) 16

  4. Questão 4

    Seis amigos decidiram realizar uma disputa de xadrez para saber quem era o melhor enxadrista da turma. Sabendo que na disputa teremos primeiro, segundo e terceiro lugares, quantos são os pódios possíveis?

    A) 120

    B) 80

    C) 45

    D) 42

    E) 30

  5. Questão 5

    A senha de acesso de uma plataforma é construída como uma sequência de 6 números distintos. Quantas são as possíveis senhas para esse site?

    A) 75.600

    B) 151.200

    C) 226.800

    D) 300.000

    E) 325.500

  6. Questão 6

    O Senado federal é composto por 81 senadores, com mandatos que possuem duração de 8 anos. Dentro do Congresso será montada uma comissão, com o presidente da comissão, o relator da comissão, o secretário e o suplente. O número de comissões distintas que podem ser formadas, escolhendo 4 dentre os 81 senadores, pode ser calculado por:

    A) \(C_{81,4}\)

    B) \(A_{81,4}\)

    C) 81!

    D) \(81^4\)

    E) \(4^{81}\)

  7. Questão 7

    Quantos números de 4 algarismos distintos podemos formar utilizando somente os algarismos ímpares?

    A) 24

    B) 120

    C) 540

    D) 720

    E) 1500

  8. Questão 8

    Em uma sala de consultório, há 6 cadeiras. De quantas maneiras distintas 2 pessoas podem se sentar nesse consultório?

    A) 9

    B) 12

    C) 15

    D) 25

    E) 30

  9. Questão 9

    Durante o vestibular de uma universidade, o estudante deve escolher a primeira e a segunda opções de curso. Se nessa universidade há 12 opções de curso, então o número de maneiras distintas que um candidato pode escolher a primeira e a segunda opções é:

    A) 33

    B) 68

    C) 132

    D) 188

    E) 244

  10. Questão 10

    Para realizar as obras em 4 escolas do estado, foi aberta uma licitação, de tal forma que cada empreiteira pudesse reformar somente uma escola. Durante a licitação, 7 empreiteiras se candidataram para reformar as escolas. De quantos modos distintos o estado pode determinar que essas empreiteiras reformem essas 4 escolas?

    A) 120

    B) 210

    C) 350

    D) 840

    E) 1630

  11. Questão 11

    Durante o estudo antropológico, um antropólogo percebeu que o povo de Wakanda utiliza como alfabeto os símbolos {@, !, #, $, % }. Considerando que cada palavra desse alfabeto tem 2 ou mais símbolos, todos distintos, a quantidade de palavras que podem ser escritas utilizando o alfabeto Wakanda é:

    A) 120

    B) 180

    C) 200

    D) 240

    E) 320

  12. Questão 12

    Analise os agrupamentos formados com as letras {A, B, C, D} a seguir:

    (A, B), (B, A), (A, C), (C, A), (A, D), (D, A), (B, C), (C, B), (B, D), (D, B), (C, D), (D, C)

    Podemos afirmar que eles são:

    A) todas as combinações simples dos 4 elementos, tomados de 2 em 2.

    B) todas as permutações possíveis de 4 elementos.

    C) todos os arranjos simples possíveis de 4 elementos, tomados de 2 em 2.

    D) todos os subconjuntos do conjunto {A, B, C, D} com 2 elementos.